Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 10(1)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35062744

RESUMEN

Human rotavirus (HRV) infection is a major cause of viral gastroenteritis in young children worldwide. Current oral vaccines perform poorly in developing countries where efficacious vaccines are needed the most. Therefore, an alternative affordable strategy to enhance efficacy of the current RV vaccines is necessary. This study evaluated the effects of colonization of neonatal gnotobiotic (Gn) pigs with Escherichia coli Nissle (EcN) 1917 and Lacticaseibacillus rhamnosus GG (LGG) probiotics on immunogenicity and protective efficacy of oral attenuated (Att) HRV vaccine. EcN-colonized pigs had reduced virulent HRV (VirHRV) shedding and decreased diarrhea severity compared with the LGG-colonized group. They also had enhanced HRV-specific IgA antibody titers in serum and antibody secreting cell numbers in tissues pre/post VirHRV challenge, HRV-specific IgA antibody titers in intestinal contents, and B-cell subpopulations in tissues post VirHRV challenge. EcN colonization also enhanced T-cell immune response, promoted dendritic cells and NK cell function, reduced production of proinflammatory cytokines/Toll like receptor (TLR), and increased production of immunoregulatory cytokines/TLR expression in various tissues pre/post VirHRV challenge. Thus, EcN probiotic adjuvant with AttHRV vaccine enhances the immunogenicity and protective efficacy of AttHRV to a greater extent than LGG and it can be used as a safe and economical oral vaccine adjuvant.

2.
mSphere ; 6(2)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33789939

RESUMEN

Human rotavirus (HRV) infection is a major cause of gastroenteritis in children worldwide. Broad-spectrum antibiotic-induced intestinal microbial imbalance and the ensuing immune-metabolic dysregulation contribute to the persistence of HRV diarrhea. Escherichia coli Nissle 1917 (EcN), a Gram-negative probiotic, was shown to be a potent immunostimulant and alleviated HRV-induced diarrhea in monocolonized gnotobiotic (Gn) piglets. Our goal was to determine how EcN modulates immune responses in ciprofloxacin (Cipro)-treated Gn piglets colonized with a defined commensal microbiota (DM) and challenged with virulent HRV (VirHRV). Cipro given in therapeutic doses for a short term reduced serum and intestinal total and HRV-specific antibody titers, while EcN treatment alleviated this effect. Similarly, EcN treatment increased the numbers of total immunoglobulin-secreting cells, HRV-specific antibody-secreting cells, activated antibody-forming cells, resting/memory antibody-forming B cells, and naive antibody-forming B cells in systemic and/or intestinal tissues. Decreased levels of proinflammatory but increased levels of immunoregulatory cytokines and increased frequencies of Toll-like receptor-expressing cells were evident in the EcN-treated VirHRV-challenged group. Moreover, EcN treatment increased the frequencies of T helper and T cytotoxic cells in systemic and/or intestinal tissues pre-VirHRV challenge and the frequencies of T helper cells, T cytotoxic cells, effector T cells, and T regulatory cells in systemic and/or intestinal tissues postchallenge. Moreover, EcN treatment increased the frequencies of systemic and mucosal conventional and plasmacytoid dendritic cells, respectively, and the frequencies of systemic natural killer cells. Our findings demonstrated that Cipro use altered immune responses of DM-colonized neonatal Gn pigs, while EcN supplementation rescued these immune parameters partially or completely.IMPORTANCE Rotavirus (RV) is a primary cause of malabsorptive diarrhea in children and is associated with significant morbidity and mortality, especially in developing countries. The use of antibiotics exacerbates intestinal microbial imbalance and results in the persistence of RV-induced diarrhea. Probiotics are now being used to treat enteric infections and ulcerative colitis. We showed previously that probiotics partially protected gnotobiotic (Gn) piglets against human RV (HRV) infection and decreased the severity of diarrhea by modulating immune responses. However, the interactions between antibiotic and probiotic treatments and HRV infection in the context of an established gut microbiota are poorly understood. In this study, we developed a Gn pig model to study antibiotic-probiotic-HRV interactions in the context of a defined commensal microbiota (DM) that mimics aspects of the infant gut microbiota. Our results provide valuable information that will contribute to the treatment of antibiotic- and/or HRV-induced diarrhea and may be applicable to other enteric infections in children.


Asunto(s)
Inmunidad Adaptativa , Antibacterianos/uso terapéutico , Ciprofloxacina/uso terapéutico , Escherichia coli/inmunología , Microbioma Gastrointestinal/efectos de los fármacos , Inmunidad Innata , Probióticos/administración & dosificación , Infecciones por Rotavirus/prevención & control , Factores de Edad , Animales , Citocinas/inmunología , Modelos Animales de Enfermedad , Escherichia coli/clasificación , Humanos , Rotavirus/inmunología , Infecciones por Rotavirus/inmunología , Porcinos
3.
PLoS One ; 16(2): e0246193, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33592026

RESUMEN

Human rotavirus (HRV) is a leading cause of diarrhea in children. It causes significant morbidity and mortality, especially in low- and middle-income countries (LMICs), where HRV vaccine efficacy is low. The probiotic Escherichia coli Nissle (EcN) 1917 has been widely used in the treatment of enteric diseases in humans. However, repeated doses of EcN are required to achieve maximum beneficial effects. Administration of EcN on a microsphere biofilm could increase probiotic stability and persistence, thus maximizing health benefits without repeated administrations. Our aim was to investigate immune enhancement by the probiotic EcN adhered to a dextranomar microsphere biofilm (EcN biofilm) in a neonatal, malnourished piglet model transplanted with human infant fecal microbiota (HIFM) and infected with rotavirus. To create malnourishment, pigs were fed a reduced amount of bovine milk. Decreased HRV fecal shedding and protection from diarrhea were evident in the EcN biofilm treated piglets compared with EcN suspension and control groups. Moreover, EcN biofilm treatment enhanced natural killer cell activity in blood mononuclear cells (MNCs). Increased frequencies of activated plasmacytoid dendritic cells (pDC) in systemic and intestinal tissues and activated conventional dendritic cells (cDC) in blood and duodenum were also observed in EcN biofilm as compared with EcN suspension treated pigs. Furthermore, EcN biofilm treated pigs had increased frequencies of systemic activated and resting/memory antibody forming B cells and IgA+ B cells in the systemic tissues. Similarly, the mean numbers of systemic and intestinal HRV-specific IgA antibody secreting cells (ASCs), as well as HRV-specific IgA antibody titers in serum and small intestinal contents, were increased in the EcN biofilm treated group. In summary EcN biofilm enhanced innate and B cell immune responses after HRV infection and ameliorated diarrhea following HRV challenge in a malnourished, HIFM pig model.


Asunto(s)
Biopelículas , Dextranos/química , Escherichia coli/fisiología , Heces/microbiología , Desnutrición/virología , Microbiota , Rotavirus/inmunología , Animales , Animales Recién Nacidos , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Modelos Animales de Enfermedad , Desnutrición/microbiología , Microesferas , ARN Mensajero/genética , Rotavirus/fisiología , Factor de Transcripción SOX9/genética , Porcinos , Regulación hacia Arriba
4.
Front Immunol ; 11: 196, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117313

RESUMEN

Human rotavirus (HRV) is a leading cause of morbidity and mortality in children, especially in developing countries. Malnutrition is prevalent in these countries, which may contribute to the decreased oral vaccine efficacy, posing a concern for global health. Neonatal gnotobiotic (Gn) pigs closely resemble human infants in their anatomy, physiology, and outbred status and are a unique model to investigate malnutrition, oral live attenuated HRV (AttHRV) vaccination, and subsequent virulent HRV (VirHRV) challenge. We evaluated the impact of malnutrition on AttHRV vaccine efficacy and B cell immune responses in neonatal germfree (GF) or Gn pigs transplanted with human infant fecal microbiota (HIFM). Pigs were fed either deficient or sufficient bovine milk diets. Malnutrition did not significantly affect the serum and intestinal contents total or HRV-specific IgG and IgA antibody titers pre VirHRV challenge. However, HRV-specific IgG and IgA antibody secreting cells (ASCs) were reduced in blood or intestinal tissues following AttHRV vaccination and pre VirHRV challenge in deficient HIFM transplanted pigs. Furthermore, post-VirHRV challenge, deficient HIFM pigs had decreased total Ig and HRV-specific IgG and IgA antibody titers in serum or intestinal contents, in addition to decreased HRV-specific IgG and IgA ASCs in blood and ileum, compared with sufficient HIFM pigs. Our results indicate that deficient diet impairs B cell mucosal, and systemic immune responses following HRV vaccination, and challenge. The impaired immune responses contributed to the decreased protective efficacy of the AttHRV vaccine, suggesting that malnutrition may significantly reduce the effectiveness of oral HRV vaccines in children in developing countries.


Asunto(s)
Células Productoras de Anticuerpos/inmunología , Trasplante de Microbiota Fecal , Desnutrición/inmunología , Vacunas contra Rotavirus/inmunología , Animales , Anticuerpos Antivirales/sangre , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/fisiología , Vida Libre de Gérmenes , Humanos , Lactante , Intestinos/inmunología , Rotavirus/inmunología , Porcinos , Vacunación , Vacunas Atenuadas/inmunología
5.
Vaccine ; 36(42): 6270-6281, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30219368

RESUMEN

BACKGROUND: Low efficacy of rotavirus (RV) vaccines in developing African and Asian countries, where malnutrition is prevalent, remains a major concern and a challenge for global health. METHODS: To understand the effects of protein malnutrition on RV vaccine efficacy, we elucidated the innate, T cell and cytokine immune responses to attenuated human RV (AttHRV) vaccine and virulent human RV (VirHRV) challenge in germ-free (GF) pigs or human infant fecal microbiota (HIFM) transplanted gnotobiotic (Gn) pigs fed protein-deficient or -sufficient bovine milk diets. We also analyzed serum levels of tryptophan (TRP), a predictor of malnutrition, and kynurenine (KYN). RESULTS: Protein-deficient pigs vaccinated with oral AttHRV vaccine had lower protection rates against diarrhea post-VirHRV challenge and significantly increased fecal virus shedding titers (HIFM transplanted but not GF pigs) compared with their protein-sufficient counterparts. Reduced vaccine efficacy in protein-deficient pigs coincided with altered serum IFN-α, TNF-α, IL-12 and IFN-γ responses to oral AttHRV vaccine and the suppression of multiple innate immune parameters and HRV-specific IFN-γ producing T cells post-challenge. In protein-deficient HIFM transplanted pigs, decreased serum KYN, but not TRP levels were observed throughout the experiment, suggesting an association between the altered TRP metabolism and immune responses. CONCLUSION: Collectively, our findings confirm the negative effects of protein deficiency, which were exacerbated in the HIFM transplanted pigs, on innate, T cell and cytokine immune responses to HRV and on vaccine efficacy, as well as on TRP-KYN metabolism.


Asunto(s)
Heces/microbiología , Vida Libre de Gérmenes , Deficiencia de Proteína/complicaciones , Vacunas Atenuadas/uso terapéutico , Animales , Humanos , Lactante , Microbiota/inmunología , Deficiencia de Proteína/inmunología , Deficiencia de Proteína/metabolismo , Rotavirus/inmunología , Rotavirus/patogenicidad , Vacunas contra Rotavirus/uso terapéutico , Porcinos , Triptófano/metabolismo
6.
BMC Gastroenterol ; 18(1): 93, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29929472

RESUMEN

BACKGROUND: Human rotavirus (HRV) is a major cause of viral gastroenteritis in infants; particularly in developing countries where malnutrition is prevalent. Malnutrition perturbs the infant gut microbiota leading to sub-optimal functioning of the immune system and further predisposing infants to enteric infections. Therefore, we hypothesized that malnutrition exacerbates rotavirus disease severity in infants. METHODS: In the present study, we used a neonatal germ free (GF) piglets transplanted with a two-month-old human infant's fecal microbiota (HIFM) on protein deficient and sufficient diets. We report the effects of malnourishment on the HRV infection and the HIFM pig microbiota in feces, intestinal and systemic tissues, using MiSeq 16S gene sequencing (V4-V5 region). RESULTS: Microbiota analysis indicated that the HIFM transplantation resulted in a microbial composition in pigs similar to that of the original infant feces. This model was then used to understand the interconnections between microbiota diversity, diet, and HRV infection. Post HRV infection, HIFM pigs on the deficient diet had lower body weights, developed more severe diarrhea and increased virus shedding compared to HIFM pigs on sufficient diet. However, HRV induced diarrhea and shedding was more pronounced in non-colonized GF pigs compared to HIFM pigs on either sufficient or deficient diet, suggesting that the microbiota alone moderated HRV infection. HRV infected pigs on sufficient diet showed increased microbiota diversity in intestinal tissues; whereas, greater diversity was observed in systemic tissues of HRV infected pigs fed with deficient diet. CONCLUSIONS: These results suggest that proper nourishment improves the microbiota quality in the intestines, alleviates HRV disease and lower probability of systemic translocation of potential opportunistic pathogens/pathobionts. In conclusion, our findings further support the role for microbiota and proper nutrition in limiting enteric diseases.


Asunto(s)
Gastroenteritis/complicaciones , Gastroenteritis/microbiología , Microbioma Gastrointestinal , Desnutrición/complicaciones , Desnutrición/microbiología , Infecciones por Rotavirus/complicaciones , Infecciones por Rotavirus/microbiología , Animales , Diarrea/microbiología , Diarrea/virología , Susceptibilidad a Enfermedades , Heces/microbiología , Gastroenteritis/virología , Humanos , Lactante , Intestinos/microbiología , Desnutrición/virología , ARN Ribosómico 16S , Infecciones por Rotavirus/virología , Análisis de Secuencia de ARN , Porcinos , Esparcimiento de Virus , Aumento de Peso
7.
Clin Vaccine Immunol ; 24(8)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28637803

RESUMEN

Malnutrition leads to increased morbidity and is evident in almost half of all deaths in children under the age of 5 years. Mortality due to rotavirus diarrhea is common in developing countries where malnutrition is prevalent; however, the relationship between malnutrition and rotavirus infection remains unclear. In this study, gnotobiotic pigs transplanted with the fecal microbiota of a healthy 2-month-old infant were fed protein-sufficient or -deficient diets and infected with virulent human rotavirus (HRV). After human rotavirus infection, protein-deficient pigs had decreased human rotavirus antibody titers and total IgA concentrations, systemic T helper (CD3+ CD4+) and cytotoxic T (CD3+ CD8+) lymphocyte frequencies, and serum tryptophan and angiotensin I-converting enzyme 2. Additionally, deficient-diet pigs had impaired tryptophan catabolism postinfection compared with sufficient-diet pigs. Tryptophan supplementation was tested as an intervention in additional groups of fecal microbiota-transplanted, rotavirus-infected, sufficient- and deficient-diet pigs. Tryptophan supplementation increased the frequencies of regulatory (CD4+ or CD8+ CD25+ FoxP3+) T cells in pigs on both the sufficient and the deficient diets. These results suggest that a protein-deficient diet impairs activation of the adaptive immune response following HRV infection and alters tryptophan homeostasis.


Asunto(s)
Inmunidad Adaptativa , Peptidil-Dipeptidasa A/metabolismo , Deficiencia de Proteína/complicaciones , Infecciones por Rotavirus/complicaciones , Triptófano/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Linfocitos B/inmunología , Diarrea/virología , Trasplante de Microbiota Fecal , Vida Libre de Gérmenes , Homeostasis , Humanos , Inmunoglobulina A/inmunología , Lactante , Microbiota , Peptidil-Dipeptidasa A/sangre , Rotavirus/inmunología , Rotavirus/aislamiento & purificación , Rotavirus/fisiología , Infecciones por Rotavirus/inmunología , Infecciones por Rotavirus/metabolismo , Sus scrofa , Linfocitos T/inmunología , Triptófano/sangre
8.
Front Immunol ; 8: 334, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28396664

RESUMEN

The role of intestinal microbiota and probiotics in prevention and treatment of infectious diseases, including diarrheal diseases in children and animal models, is increasingly recognized. Intestinal commensals play a major role in development of the immune system in neonates and in shaping host immune responses to pathogens. Lactobacilli spp. and Escherichia coli Nissle 1917 are two probiotics that are commonly used in children to treat various medical conditions including human rotavirus diarrhea and inflammatory bowel disease. Although the health benefits of probiotics have been confirmed, the specific effects of these established Gram-positive (G+) and Gram-negative (G-) probiotics in modulating immunity against pathogens and disease are largely undefined. In this review, we discuss the differences between G+ and G- probiotics/commensals in modulating the dynamics of selected infectious diseases and host immunity. These probiotics modulate the pathogenesis of infectious diseases and protective immunity against pathogens in a species- and strain-specific manner. Collectively, it appears that the selected G- probiotic is more effective than the various tested G+ probiotics in enhancing protective immunity against rotavirus in the gnotobiotic piglet model.

9.
mSphere ; 2(2)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28261667

RESUMEN

Malnutrition affects millions of children in developing countries, compromising immunity and contributing to increased rates of death from infectious diseases. Rotavirus is a major etiological agent of childhood diarrhea in developing countries, where malnutrition is prevalent. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. In this study, we used neonatal gnotobiotic (Gn) pigs transplanted with the fecal microbiota of a healthy 2-month-old infant (HIFM) and fed protein-deficient or -sufficient bovine milk diets. Protein deficiency induced hypoproteinemia, hypoalbuminemia, hypoglycemia, stunting, and generalized edema in Gn pigs, as observed in protein-malnourished children. Irrespective of the diet, human rotavirus (HRV) infection early, at HIFM posttransplantation day 3 (PTD3), resulted in adverse health effects and higher mortality rates (45 to 75%) than later HRV infection (PTD10). Protein malnutrition exacerbated HRV infection and affected the morphology and function of the small intestinal epithelial barrier. In pigs infected with HRV at PTD10, there was a uniform decrease in the function and/or frequencies of natural killer cells, plasmacytoid dendritic cells, and CD103+ and apoptotic mononuclear cells and altered gene expression profiles of intestinal epithelial cells (chromogranin A, mucin 2, proliferating cell nuclear antigen, SRY-Box 9, and villin). Thus, we have established the first HIFM-transplanted neonatal pig model that recapitulates major aspects of protein malnutrition in children and can be used to evaluate physiologically relevant interventions. Our findings provide an explanation of why nutrient-rich diets alone may lack efficacy in malnourished children. IMPORTANCE Malnutrition and rotavirus infection, prevalent in developing countries, individually and in combination, affect the health of millions of children, compromising their immunity and increasing the rates of death from infectious diseases. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. We have established the first human infant microbiota-transplanted neonatal pig model of childhood malnutrition that reproduced the impaired immune, intestinal, and other physiological functions seen in malnourished children. This model can be used to evaluate relevant dietary and other health-promoting interventions. Our findings provide an explanation of why adequate nutrition alone may lack efficacy in malnourished children.

10.
Gut Pathog ; 8: 66, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27999620

RESUMEN

We evaluated the effects of the probiotic Escherichia coli Nissle 1917 (EcN) and the antibiotic Ciprofloxacin (Cipro) on mRNA expression of intestinal epithelial cells (IEC) in gnotobiotic (Gn) piglets colonized with a defined commensal microflora (DMF) and inoculated with human rotavirus (HRV) that infects IECs. We analyzed mRNA levels of IEC genes for enteroendocrine cells [chromogranin A (CgA)], goblet cells [mucin 2 (MUC2)], transient amplifying progenitor cell [proliferating cell nuclear antigen (PCNA)], intestinal epithelial stem cell (SOX9) and enterocytes (villin). Cipro treatment enhanced HRV diarrhea and decreased the mRNA levels of MUC2 and villin but increased PCNA. These results suggest that Cipro alters the epithelial barrier, potentially decreasing the numbers of mature enterocytes (villin) and goblet cells secreting protective mucin (MUC2). These alterations may induce increased IEC proliferation (PCNA expression) to restore the integrity of the epithelial layer. Coincidental with decreased diarrhea severity in EcN treated groups, the expression of CgA and villin was increased, while SOX9 expression was decreased representing higher epithelial integrity indicative of inhibition of cellular proliferation. Thus, EcN protects the intestinal epithelium from damage by increasing the gene expression of enterocytes and enteroendocrine cells, maintaining the absorptive function and, consequently, decreasing the severity of diarrhea in HRV infection.

11.
Eur J Immunol ; 46(10): 2426-2437, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27457183

RESUMEN

Lactobacillus rhamnosus GG (LGG), a gram-positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram-negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN-, LGG-, and EcN + LGG-colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK-cell function and decreased frequencies of apoptotic and TLR4+ mononuclear cells (MNCs). Consistent with the highest NK-cell activity, splenic CD172+ MNCs (DC enriched fraction) of EcN-colonized pigs produced the highest levels of IL-12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG-colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN-treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN-α, IL-12, and IL-10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN-mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC-IL-12-NK immune axis.


Asunto(s)
Células Dendríticas/inmunología , Infecciones por Escherichia coli/inmunología , Escherichia coli/inmunología , Mucosa Intestinal/inmunología , Células Asesinas Naturales/inmunología , Lacticaseibacillus rhamnosus/inmunología , Infecciones por Rotavirus/inmunología , Rotavirus/inmunología , Animales , Diferenciación Celular , Células Cultivadas , Citocinas/metabolismo , Citotoxicidad Inmunológica , Células Dendríticas/virología , Vida Libre de Gérmenes , Humanos , Inmunidad Innata , Mediadores de Inflamación/metabolismo , Activación de Linfocitos , Probióticos , Porcinos
12.
Vet Immunol Immunopathol ; 171: 7-16, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26964712

RESUMEN

Toll-like receptors (TLRs), key initiators of innate immune responses, recognize antigens and are essential in linking innate and adaptive immune responses. Misrecognition and over-stimulation/expression of TLRs may contribute to the development of chronic inflammatory diseases and autoimmune diseases. However, appropriate and mature TLR responses are associated with the establishment of resistance against some infectious diseases. In this study, we assessed the mRNA expression profile of TLRs 1-10 in splenic and ileal mononuclear cells (MNCs) and dendritic cells (DCs) of germ-free (GF) and conventional pigs at different ages. We found that the TLR mRNA expression profiles were distinct between GF and conventional pigs. The expression profiles were also significantly different between splenic and ileal MNCs/DCs. Comparison of the TLR expression profiles in GF and conventional newborn and young pigs demonstrated that exposure to commensal microbiota may play a more important role than age in TLR mRNA expression profiles. To our knowledge, this is the first report that systematically assesses porcine TLRs 1-10 mRNA expression profiles in MNCs and DCs from GF and conventional pigs at different ages. These results further highlighted that the commensal microbiota of neonates play a critical role through TLR signaling in the development of systemic and mucosal immune systems.


Asunto(s)
Envejecimiento/metabolismo , Receptores Toll-Like/metabolismo , Envejecimiento/genética , Animales , Células Dendríticas/metabolismo , Perfilación de la Expresión Génica , Vida Libre de Gérmenes/genética , Íleon/citología , Íleon/metabolismo , Leucocitos Mononucleares/metabolismo , Microbiota/inmunología , ARN Mensajero/metabolismo , Bazo/citología , Bazo/metabolismo , Porcinos , Receptores Toll-Like/genética
13.
J Virol ; 90(1): 142-51, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26468523

RESUMEN

UNLABELLED: The changing epidemiology of group A rotavirus (RV) strains in humans and swine, including emerging G9 strains, poses new challenges to current vaccines. In this study, we comparatively assessed the pathogenesis of porcine RV (PRV) G9P[13] and evaluated the short-term cross-protection between this strain and human RV (HRV) Wa G1P[8] in gnotobiotic pigs. Complete genome sequencing demonstrated that PRV G9P[13] possessed a human-like G9 VP7 genotype but shared higher overall nucleotide identity with historic PRV strains. PRV G9P[13] induced longer rectal virus shedding and RV RNAemia in pigs than HRV Wa G1P[8] and generated complete short-term cross-protection in pigs challenged with HRV or PRV, whereas HRV Wa G1P[8] induced only partial protection against PRV challenge. Moreover, PRV G9P[13] replicated more extensively in porcine monocyte-derived dendritic cells (MoDCs) than did HRV Wa G1P[8]. Cross-protection was likely not dependent on serum virus-neutralizing (VN) antibodies, as the heterologous VN antibody titers in the sera of G9P[13]-inoculated pigs were low. Thus, our results suggest that heterologous protection by the current monovalent G1P[8] HRV vaccine against emerging G9 strains should be evaluated in clinical and experimental studies to prevent further dissemination of G9 strains. Differences in the pathogenesis of these two strains may be partially attributable to their variable abilities to replicate and persist in porcine immune cells, including dendritic cells (DCs). Additional studies are needed to evaluate the emerging G9 strains as potential vaccine candidates and to test the susceptibility of various immune cells to infection by G9 and other common HRV/PRV genotypes. IMPORTANCE: The changing epidemiology of porcine and human group A rotaviruses (RVs), including emerging G9 strains, may compromise the efficacy of current vaccines. An understanding of the pathogenesis and genetic, immunological, and biological features of the new emerging RV strains will contribute to the development of new surveillance and prevention tools. Additionally, studies of cross-protection between the newly identified emerging G9 porcine RV strains and a human G1 RV vaccine strain in a susceptible host (swine) will allow evaluation of G9 strains as potential novel vaccine candidates to be included in porcine or human vaccines.


Asunto(s)
Protección Cruzada , Genotipo , Rotavirus/inmunología , Rotavirus/fisiología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Antígenos Virales/genética , Proteínas de la Cápside/genética , Células Dendríticas/virología , Genoma Viral , Vida Libre de Gérmenes , Humanos , ARN Viral , Recto/virología , Rotavirus/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Porcinos , Viremia , Replicación Viral , Esparcimiento de Virus
14.
J Am Assoc Lab Anim Sci ; 47(6): 10-8, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19049247

RESUMEN

A preferred method to genotype genetically engineered mice is through collection of distal tail tissue (tail biopsy) followed by DNA isolation. Currently, general or local anesthesia (or both) is recommended for biopsy after 3 wk of age, the time after which tail vertebrae are considered to be ossified. Our objective was to rigorously evaluate vertebral development, DNA content, and acute behavioral responses at different ages by harvesting tail biopsies of different lengths. We evaluated laboratory mice from 5 inbred strains and 1 outbred stock at each of 12 ages (3 to 42 d of age). Biopsies of 5-, 10-, and 15-mm lengths were obtained. Vertebrae were graded according to level of ossification by using complementary modalities of high-resolution microradiography, microcomputed tomography, and histology. Vertebral development progressed at different rates among the strains, with mature tail vertebrae containing endplates detectable in the tail of some strains by 10 d of age. Within the distal 2 mm of tail, end plates were not identified before 21 d of age. DNA yield (DNA weight/tissue weight) was greatest from the 5-mm biopsy harvest. Acute behavioral responses to biopsy varied by age and strain, and these differences were associated with vertebral maturation. Vertebral development progressed most rapidly in C57BL/6 mice, which also demonstrated the highest response rate to biopsy, whereas BALB/c mice had slower vertebral development and were less responsive. These findings support the collection of minimal lengths of tail tissue from mice at ages younger than 17 d, unless anesthesia or analgesia is provided.


Asunto(s)
Conducta Animal , Biopsia/veterinaria , ADN/análisis , Ratones , Osteogénesis , Cola (estructura animal)/patología , Envejecimiento , Analgesia/veterinaria , Anestesia/veterinaria , Animales , Biopsia/efectos adversos , Biopsia/métodos , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Columna Vertebral/crecimiento & desarrollo , Columna Vertebral/patología , Cola (estructura animal)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...